
precisely.com | 877 700 0970IBM i OS Journaling and High Availability1

IBM i OS Journaling and High Availability 
A guide to understanding the  foundation of software-based  replication in IBM i environments

Introduction
IBMs midrange computers, from the earliest System/38 to 
today’s Power Systems servers, have a reputation for reliability. 
That reliability is in great part due to the journaling features that 
have been present in all variations of its operating system. Every 
system event and configuration change is journaled (logged) so 
that recovery from application errors or hardware problems is 
easier and faster.

Journaling was initially introduced as a feature of the operating 
system on IBM System/38 computers and was intended to 
aid technicians in their system recovery efforts. In the event of 
a catastrophic failure, the system administrator could reload 
the last good backup tape and, by applying the saved journal 
entries that had accumulated since that backup tape was 
made, restore the database to the point in time when the 
journal entries were last saved to tape. Less catastrophic system 
crashes, in which there was only the loss of data in memory, 
were an easier recovery. At the power-up Initial Program Load 
(IPL) following the crash, the journal entries stored on disk would 
be sequentially applied to the database, recovering the lost 
transactions up to the point of failure.

As one would expect, the necessary recovery process for system 
failures was a time-consuming operation. Retrieving the backup 
tapes from their offsite location and first loading the system 
tapes and then the journal entry tapes to recover a large and 
complex database took several hours at best and sometimes 
several days. Organizations with a low tolerance for extended 
downtime increasingly found the tape-based recovery method 
inadequate.

Journaling was not originally intended to be used as an all-
encompassing high availability (HA) and disaster recovery (DR) 
agent; yet over time, it has become the foundation upon which 
HA and DR solutions are based. Subsequent improvements  
to journaling itself, as well as tangential technologies brought 
forth by both IBM and third-party vendors, have fortified  
the recovery and resiliency capabilities of IBM i, which now 
encompass security, compliance, and data-integrity checking.
Journaling is a powerful feature and valuable tool for all HA 
and DR solutions for the IBM i. This white paper will cover what 
you need to know about journaling, what it can do, and how it 
supports HA software.



precisely.com | 877 700 0970IBM i OS Journaling and High Availability2

Journaling Basics
There are two journal types of interest relative to HA for Power 
Systems servers running the IBM i operating system (formerly i5/
OS and OS/400): the security audit journal and user journals. 
The former tracks changes to object properties (e.g., object 
creation/deletion, authorities, etc.), while the latter tracks 
changes to records in data files, data areas, data queues, and 
IFS files.

Security audit journal
This journal is specifically designed for security, allowing for 
auditing of all data and configuration changes taking place 
on the server. It’s defined by the operating system and can also 
be used in third-party HA solutions to assist in the detection 
of changes for the purpose of replicating and maintaining a 
backup copy of the total source (production) server environment 
that contains both user data and configurations. The security 
audit journal monitors and records changes for 98 object types. 
HA solutions vary in how many objects they monitor through the 
security audit journal.

User journals
These journals are fully configurable and designed to monitor 
four object types: file objects (database), data area objects, 
data queue objects, and IFS objects. Their purpose is to capture 
the changes since the last backup. The remainder of this 
paper will discuss the features and functions of user journals as 
provided by the IBM i OS.

The topic of journaling, as far as this paper is concerned, starts 
with disaster recovery. What needs to be recreated in the event 
of a disaster or loss of the system? How far back in time can the 
recovery process go to regenerate application data changes? 
How much time will it take to get back to normal operations? 
These questions are important regardless of whether you have 
days or minutes to recover your critical applications. 

Clearly, production data must be protected by journaling, but 
most businesses have data associated with non-essential 
operations that does not need to be journaled. For example,  
testing, data analysis, and other “batch” operations might be 
restarted from scratch or from some checkpoint, and therefore 
would not need to be journaled. This is also the case for 
temporary application work files that will be recreated  
automatically.

The basic journaling process (see Figure 1), sometimes referred 
to as “local journaling,” can be described as follows:

1.   An application processes transactions that update records in 
a database file.

2.  The Operating System (OS) System Licensed Internal Code 
(SLIC) intercepts the transactions, records the changes that 

have taken place, and creates a record (or “journal entry”) of 
the actual changed data. Depending on how an application 
is built, including auditing level, there will likely be many 
entries for each transaction. Other information written in the 
journal entry includes the date and time of the transaction, 
user identification, initiating program, job identification, 
relative record number, library of the file being journaled,  
and whether the journal entry was generated by a trigger.

3.  The newly created journal entry is written to a storage area 
called a “journal receiver,” where it is available for use.

“A journal is a chronological 
record of changes made to a 
set of data. The purpose of the 
journal is to provide a means to 
reconstruct a previous version of 
the set  of data. When a change   
is made to a record in a  
database file that is being  
journaled, a copy of the  record 
is written to the  journal, along 
with information describing   
the cause of the change.” 
 
- Frank Soltis, former IBM chief scientist 
and “Father of the AS/400”

FIGURE 1: Local Journaling

Source Server

TRANSACTIONAPPLICATION DATABASE

JOURNAL 
RECEIVER

Journal Entry



precisely.com | 877 700 0970IBM i OS Journaling and High Availability3

4.  The database change is pinned in memory and is not 
released until the journal entry is written to the journal 
receiver on disk. In order to optimize system performance,  
the updated database record itself will continue to reside  
in main memory until forced to disk. 
 
Configuration of a user journal consists of deciding what 
libraries, objects, and files need to be journaled to ensure 
the system can be recovered in the event of an outage. 
With modern HA/DR software, the actual configuration 
of a journal is handled with simple clicks from a high-level 
GUI interface, but in its basic form, a journal receiver is first 
created using the Create Journal Receiver (CRTJRNRCV) 
command. Next, a journal is created and an associated 
receiver is specified using the Create Journal (CRTJRN) 
command. Finally, journaling is started for specific files 
by associating a file to a journal, accomplished with a 
Start Journal command such as Start Journal Physical File 
(STRJRNPF).

Journaling and Recovery Point Objectives
IBM i operating system storage management allocates storage 
to application processes and handles the retrieval and saving  
of all data in segments called “memory pages.” Main memory  
is treated as a cache that is optimized for performance. As a 
result, data that is referenced repeatedly will be held in memory 
across multiple changes to the data. In fact, an object could 
stay in memory indefinitely. This presents a major problem for 
high availability and disaster recovery since the target server 
must be as up-to-date as possible at the point of a failure. 
Holding data in memory for an indeterminate amount of time 
makes it impossible to accurately quantify a recovery point, the 
time difference between the state of business operations at the 
point of failure and the restart point on the target server 
following a failure. Journaling is the solution to recover data that 
would otherwise be lost when the source server fails. While the 
database record itself remains in memory across multiple data 
changes, a journal of the individual changes is stored on disk in 
the storage subsystem in a journal receiver at the completion of 
each individual data change. In the event of an outage resulting 
in the loss of main memory, the current state of the business at 
the point of failure can be recreated with the sequential 
application of the journal entries to the copy of the database  
on the target server.

Local journaling captures changes on the source server and  
writes them to a journal receiver in storage on that server. In the 
event of a system crash, that journal receiver is used during 
power-up IPL operations to recover changed database, IFS,  
data area, and data queue files for objects that had not yet  
been saved to storage. These journal receivers can also be used 
by third-party HA software, which can send them to a backup 
server and apply them in real time, in order to be prepared for  
a possible failure where the target server becomes the primary 
or source server that runs the business operations. 

Due to the unknown latency between data changes made in 
memory and the writing of these changes to disk, journaling is 
the only solution for maintaining a zero or near-zero Recovery 
Point Objective (RPO) on the IBM i platform. This is true whether 
using journal-based logical replication solutions or SAN-based 
hardware replication solutions. All solution options must have 
journaling as part of the protection of the data. 

Recovery from an unplanned outage means going back to a 
starting journal entry in the journal receiver and applying the 
changes sequentially to ensure that all of the changed objects 
lost in memory on the failed source server are accounted for. To 
keep this recovery process from taking an inordinately long time,  
a journal task continually updates this starting point. Journaling 
provides functionality to periodically sweep through the entire 
main storage to write to disk all database, IFS, data area, and 
data queue records that have journal entries saved to disk but 
the record itself has not yet been saved. After each sweep of the 
memory, the next journal entry becomes the  starting point that 
will be used for recovery of transactions in the event of an outage.

Journaling is the only solution for 
maintaining a zero or near-zero 
Recovery Point Objective (RPO) 
on the IBM i platform.



Journaling Features
Journal entries have standard structures for the different object 
types supported by journaling. The following features can be 
configured to minimize the amount of data contained within  
the journal entry so as to optimize bandwidth usage and 
performance.

Selective journaling
The administrator has control over what is journaled and thus 
has the ability to optimize for performance and bandwidth 
between source and target servers. Journaling can be  
configured for libraries, directories, folders, and individual  
objects. More importantly, it can exclude things like high- 
volume temporary work files to decrease journaling and HA 
replication performance costs. Many HA and DR products   
have additional ease-of-use configuration capabilities such   
as excluding specific objects from journaled libraries.

Journal minimal data
This key journaling feature for database objects reduces the size 
of what is saved in the journal. Normally, the entire record, or 
row, is included in the journal entry. With Journal Minimal Data, 
only the portion of the data that was actually changed gets 
saved. This is based either on a bit boundary or on a field or 
column boundary. The savings in storage space can be 
significant, but it comes at the expense of reduced ability to 
read a journal entry for debug purposes.

Before images
These images show the record (or row) in the database as  
it appears before the operation makes changes to the data.  
This record is not included in the journal entry by default but 
can be included if needed by the application. System OS-based 
applications such as commitment control (see below) or 
system-managed access-path protection (SMAPP), which 
journals the access paths, require the before images and will  
override this feature as necessary.

Commitment control
This feature treats a series of transactions as a single entity.  
All of the transactions to a file associated with a single process 
are considered to be “pending” until the entire operation is 
complete. For example, the ATM application for a bank might 
have to rollback a canceled transaction, or a reservation system 
might have to rollback an abandoned booking. In those cases 
all transactions associated with those actions need to be 
considered pending until the entire operation is committed. 
Journaling is a key element of commitment control, maintaining 
the before images so that the changes can be rolled back if 
necessary.

precisely.com | 877 700 0970IBM i OS Journaling and High AvailabilityMIMIX for Power HA4

Journal caching
Caching is a major performance feature of journaling that 
optimizes disk writes. It is available under Option 42 of the IBM i 
operating system. Since the writing of journal entries is sequential 
in order to maintain the sequence of the transactions, there are 
time delays when a series of individual write operations are 
made to the disk. Between all write operations, there is at least 
one revolution of the disk platter before the next sequential 
sector on that track can be located and written. By caching a 
full track of sectors and bundling them into a single 128K write 
operation, the entire track can be written in a single revolution  
of the disk, eliminating the wait time between sequential disk 
sector writes. The performance gain can be substantial. Even 
with an additional caching operation when using disk adapter 
I/O write cache hardware, additional savings will be realized 
with journal caching.

The caution when using journal caching is that the journal 
entries are held in memory until a full 128K bundle is assembled. 
Because of this, there is a potential of losing up to one track of 
journal entries if there is a source server crash.

Journal at birth
This feature allows new objects that are added to an existing 
database file to be enrolled into the journal associated with that 
file without the HA product having to monitor for new object 
creation events in the security audit journal and then enroll the 
new objects. The savings in time and complexity contribute to 
the overall performance of the application. Inherent Journaling  
is the name for a similar function used for IFS objects.



Remote Journaling
Remote journaling is an extension of local journaling that 
efficiently sends the journal entries to a journal receiver on  
a remote server (see Figure 2). It is part of the Operating  
System code with access to all of the optimization features 
available at that level below the machine interface (MI), 
including bypassing some of the code layers in the normal 
communication interface operations.

The basic remote journal process (see Figure 2) can be 
described as follows:

1.   An application processes transactions on the source  
server that typically update records in a database file.

2.  The OS journal code creates a journal entry of the actual 
changed data and sends it to the local journal receiver in  
the source-server storage. It also initiates a communication 
task to send the same journal entry to a remote journal 
receiver on one or more target servers.

3.  The memory page remains pinned on the source server  
until the local journal receiver is updated.

4.  Further action with the remote journal receiver is the 
responsibility of high availability software, but typically that 
software applies the journal entries in the remote journal’s 
receiver to the database on the target server so that the state 
of the data is synchronized between the source and target 
servers in real time.

Remote journaling is designed for high availability, focusing on 
the efficient transfer of journal entries to a target server where 
they will be safe from any planned or unplanned loss of the 
source server. For data protected with a user journal, it provides 
an efficient mechanism for rapid transfer of the data changes  
to the target server.

Remote journaling provides solid processes for ensuring that the  
security and integrity of the data transfer is maintained for the   
HA/DR environment. This includes the following functionality:

Auditing of data transfer 
Auditing keeps track of the journal entries sent to the target 
server. If acknowledgement from the target is not received,  
this function handles the resend process, guaranteeing that 
journaled information reaches the backup.

precisely.com | 877 700 0970IBM i OS Journaling and High Availability5

Broadcast mode
This functionality sends the journal entries to multiple target 
servers and handles the complexity associated with multiple 
connections. The theoretical limit of 255 connections is more 
than enough for any environment. This is one way that the  
HA application can maintain multiple target servers and keep 
track of the proper direction of replication to the various servers 
following a switch of the production environment to one of  
those servers.

TCP/IP (IPv4 and IPv6)
TCP/IP is the preferred supported communication transfer 
mechanism used to connect servers, and remote journaling 
supports the required configurations. This includes configuration 
of secure sockets, which provides the encryption needed to  
meet today’s security requirements. 

FIGURE 2: Remote Journaling

Source Server

TRANSACTIONAPPLICATION DATABASE

JOURNAL 
RECEIVER

Journal Entry

HA 
APPLICATION

DATABASE

REMOTE  
JOURNAL 
RECEIVER

Target Server



Synchronous and Asynchronous Remote Journaling 
Remote journaling transmits journal entries either 
asynchronously or synchronously. 

Synchronous remote journaling
This method holds off saving the journal entry to disk on the 
source server until acknowledgement of receipt of the journal 
entry by the target server is acknowledged. Because of this, 
synchronous remote journaling is more than a communication 
transfer function. If the journal entry is not received by the target 
server, the change is not recorded by the source server in the 
local journal receiver. This provides the potential for an RPO of 
zero loss of data in the event of a system failure.

Although an RPO of zero that can be achieved with 
synchronous remote journaling is compelling in HA and DR 
solutions, for most companies the effect on system performance 
often makes it impractical, particularly if the target server is 
located greater than 25 km from the source server. Servers are 
now capable of speeds that outrun the physical transfer 
capabilities across today’s communication technologies, 
resulting in distance-determined latency times that can leave 
the business operations on the source server waiting.

Asynchronous remote journaling
This method does not add delays to the writing of the journal 
entry on the source server. The remote journal communication 
transfer is initiated at the same time with the assumption that it 
will be successful. Verification is after the fact. Most companies 
that use remote journaling in their HA solution find that the 
performance advantages of asynchronous operations are  
worth the tradeoff as the potential loss of in-flight data can be 
handled by check-pointing techniques such as commitment 
control.

Remote Journaling Features
Remote Journaling has many features that are designed to 
optimize bandwidth, performance, security, and accuracy.

Catch-up mode
When a communication connection between source and target  
servers is dropped for any reason, remote journaling will go 
inactive and an indication will be sent. Local journaling will 
continue on the source server, and the unsent journal entries will 
be buffered until the communication connection has been 
restored. When communication is restored and remote 
journaling is activated, it will come up in “catch-up mode.” All of 
the unsent journal entries will be bundled together into the 
maximum packet size to optimize bandwidth usage until the 
journal entry backlog is eliminated. This provides a great 
performance boost, and speeds up the process of getting the 
target synchronized with the source.

precisely.com | 877 700 0970IBM i OS Journaling and High Availability6

Remote journal filtering
The remote journal can be configured to filter out journal entries 
that do not need to be sent to the target, as well as reducing  
the content of the journal entry. This reduces bandwidth 
requirements. Remote journal filtering is available under Option 
42 of the IBM i operating system. Three criteria can be used to 
filter entries sent to the remote system:

• Filtering of before images—This type of filtering eliminates  
the before image from the journal entry that is sent to the 
target server and reduces bandwidth requirements related  
to journaling. While before images can be removed from  
what is saved in the journal entry, they are necessary when 
implementing commitment control. However, rollback is 
something that occurs on the source server, not the target 
server. Thus, journal filtering allows for keeping the before 
images in the journal entry for commitment control on the 
source server while not sending them to the target server.

• Filtering by object—Object filtering is a major tool for 
additional bandwidth reduction. Not only does it allow  
the administrator to filter out user-related data objects  
such as temporary files, but there are also files that are 
journaled by the OS on the source server for debug or 
commitment control purposes that are not needed for  
HA and DR on the target server. These are filtered out  
by default when remote journal filtering is activated  
and can result in significant bandwidth savings.

• Filtering by program name—This filtering is designed for 
active-active solutions where all servers are both source and 
target servers. HA solutions that provide this feature need to 
know that the journal entry coming back from the target server 
did not originate from the source server by the HA application.

The criteria related to the three filtering functions are specified 
when activating a remote journal. Different remote journals or 
individual local journals can have different filter criteria. It should 
be noted that remote journal filtering can be specified only for 
asynchronous remote journal connections.

Journal caching
This feature of local journaling also works with remote journaling 
to decrease bandwidth requirements over communication links. 
The journal on the source server will bundle the sequential 
journal entries into 128K blocks and send it to the communication 
interface as a single operation. The entire set of bundled journal 
entries will not be written to the source server storage subsystem 
until acknowledgement is received from the target server.

Journal minimal data
This feature of local journaling also works with remote journaling 
to reduce the size of the journal entry and reduce remote journal 
bandwidth requirements.



Remote journal validity checking
This feature ensures that the communication process is not 
introducing errors into the data being transmitted when 
operating over unstable networks. The TCP standard 
communication interface error-detection logic will retransmit 
packets when it detects single-bit errors in the transmission. 
There is a finite risk of double-bit errors going undetected by 
 this logic. Remote journal validity checking can be activated  
to provide a data check that encompasses the entire journal 
entry transfer operation; otherwise, these errors introduced by 
the network will go undetected when the journal entry is saved 
in the copy of the user database. In this case detection of the 
errors relies solely on auditing and repair functions within the 
HA software.

Secure remote journal 
This feature provides encryption of the journal entry during 
transfer of the journal entry over the communication link.  
The journal entry is un-encrypted when placed in the remote 
journal receiver on the target server.

Journal receiver read authority 
The administrator can determine the authority level required  
to read the journal receiver, reducing the exposure of 
unauthorized access to data involved in the journaling process, 
whether local journaling or remote journaling.

How HA/DR Applications Build Upon   
Journaling to Provide a Complete Solution
The fundamental role of an HA solution is twofold:

1. To provide quick recovery of operations in any unplanned 
downtime scenario

2. To provide continuity of operations during planned  
downtime events

What journaling provides is a solid platform on which an HA 
solution can be built— whether hardware-based or software-
based. It offers protection for transaction integrity in an IBM i 
environment where memory is used as performance cache. 

It is essential that your software-based HA solution manage 
and maintain the following:

System synchronization
Synchronization ensures that all transactions to the source 
server database have been recorded to the copy of the 
database on the target server. If the data and objects on a 
target server are not identical to those on the source server,  
the ability to switch the business operations to the target  
server when required may be compromised. It is this switch 
confidence that is key to any successful HA solution.

precisely.com | 877 700 0970IBM i OS Journaling and High Availability7

Replicating non-journaled objects
Journaling handles the four basic object types that make up the 
vast majority of user data. However, there are other objects that 
may be important to the user’s environment and are critical for 
maintaining the business when operations are switched to the 
target server. An example would-be changes to objects such as 
program objects or user profiles, which are not reflected in a 
journal and must be handled independently to properly 
synchronize source and backup servers. Failure to do so may 
jeopardize the success of a planned or unplanned switch. HA 
software products typically provide object-level replication 
services that handle some number of these vital non-journaled 
objects.

If the target server is to be complete and ready to run critical 
business applications when called upon to do so, the HA 
solution must also replicate application objects (programs, user 
profiles, authorization lists, configuration objects, spooled files, 
etc.). In this case, in addition to applying the journaled changes 
to the copy of the database on the target server, work must be  
performed on the source server to capture and send the 
occasional but necessary changes of these other objects to  
the target server.

Data integrity
The ability to verify that the contents of the copy of the database 
are the same as the contents of the primary database at any 
given time is critical to ensuring effective HA. 

IBM i OS journaling on its own does not provide source and 
target synchronization nor integrity validation. This functionality 
is provided only by advanced HA software. Without it, switching 
the production environment to the target (the act of substituting 
the target for the source server, also referred to as “role swap”) 
cannot reliably occur.

Switching
One of the more critical features of any HA solution is the ability 
to quickly utilize your target server as the production 
environment, whether during a test or during an actual 
downtime event. This process is referred to as a switch or role 
swap. There are many factors to a successful switch, which  
include HA software functionality as well as strong internal 
processes and regular testing.

Housekeeping
It is the responsibility of an HA solution to remove journal entries 
that are no longer needed from the target server once they are 
applied to the database. Entries prematurely designated for 
removal would result in data-integrity or synchronization 
problems. Some HA products provide journal management tools 
that coordinate with their journal-apply processes so that journal 
entries are deleted only after the HA software is finished with 
them. These products can coordinate the deletion of both 
remote and local journal receiver entries.



In Summary
The foundation of every software-based high availability 
solution is journaling— both local and remote. In fact, even 
hardware-based  HA solutions require local journaling to 
maintain system integrity. Integrated within the IBM i operating 
system, it is the critical plumbing of local and remote journaling 
that makes it possible to meet aggressive objectives for rapid 
recovery time (RTO), a complete recovery point (RPO), and low 
impact on network bandwidth. Software vendors have built HA 
solutions around these powerful journaling capabilities, with   
the top vendors providing a suite of capabilities necessary for 
a  complete, reliable HA solution.

Precisely offers several journal-based high availability solutions 
that scale to handle the workloads of SMBs to the largest 
enterprises. Built-in audits with self-healing and automated 
procedures assure confident switching. And a variety of 
easy-of-use features enable the solutions to be managed in  
ust minutes a day.

Armed with the knowledge of journaling, do your homework  
to understand each component of an HA solution. Fully 
recognize your business requirements and apply the 
appropriate technology, methods, and skills to achieve a 
solution that addresses your specific availability needs and 
provides a satisfactory ROI. Precisely is here to help with all  
your software and service needs for IBM i high availability.

precisely.com | 877 700 0970IBM i OS Journaling and High Availability8



Copyright ©2020 Precisely. All rights reserved worldwide. All other company and 
product names used herein may be the trademarks of their respective companies.

About Precisely
Precisely is the global leader in data integrity, providing 
accuracy and consistency in data for 12,000 customers in more 
than 100 countries, including 90 percent of the Fortune 100. 
Precisely’s data integration, data quality, location intelligence, 
and data enrichment products power better business decisions 
to create better outcomes.

Learn more at precisely.com. 


