Noticias y Eventos
hi-spins-novedades-10.3.xHi-Spins   Novedades 10.3.x

(Para versiones anteriores, no dudes en consultarnos)

logo-hi-spins-mobile-2

El poder del Data Warehouse con la facilidad del Data Mart


El Escenario

En una empresa hay muchas personas que necesitan información para su trabajo. Además, la necesidad de información crece día tras día. Un elevado porcentaje del tiempo de algunos usuarios está dedicado a los intentos de obtenerla. A ello se añade una gran cantidad de tiempo de los informáticos, que les dan soporte en este esfuerzo. Facilitar estas tareas y acortar el tiempo que consumen entre todos, liberaría una enorme cantidad de recursos para las tareas productivas de gestión. 
 

Es fácil cambiarlo

Con Hi-Spins será fácil cambiarlo. A pesar de que sus sistemas informáticos han venido evolucionando durante años y hay una buena cantidad de dinero acumulada en su desarrollo, con Hi-Spins en muy pocos meses cambiará el panorama. Aunque los proyectos data warehouse ya se han ganado la fama de complejos, largos y costos, Software Greenhouse tiene una solución adecuada, rápida y económica para los mayoristas y distribuidores, firmas de transporte o mensajería y gran cantidad de otras empresas. En muchos casos, Hi-Spins se utiliza como herramienta departamental que complementa un proyecto EIS o un Data Warehouse corporativo, que pueden haber dado muy buenos resultados, pero son excesivamente complejos para proporcionar soluciones rápidas y económicas en el día a día.
 

Hi-Spins Metodología

Uno de los principales factores del éxito de Hi-Spins en los sectores de mercado a los que se dirige, es precisamente la dimensión adecuada de los proyectos. Los proyectos de Hi-Spins parten típicamente del análisis de las bases de datos existentes, separando lo esencial de lo irrelevante y eliminando las repeticiones e inconsistencias. Hi-Spins permite construir, en pocos días, prototipos muy cercanos a lo que van a ser los modelos de datos finales. Así, los usuarios pueden evaluar los resultados que se obtendrán, antes de que se produzcan las desviaciones de sus requerimientos reales, tan características para muchos proyectos informáticos.

A pesar de partir de las bases de datos existentes, el producto permite incorporar con facilidad datos externos, así como fusionar en el mismo data mart datos provenientes de distintas bases de datos e inclusive de múltiples servidores, que pueden pertenecer a distintas plataformas.

Hi-Spins comparte instalaciones con todos los ERP’s importantes del mercado, incluyendo SAP, J. D. Edwards, Movex y BPCS. Uno de los enfoques innovadores que aporta Software Greenhouse, es la implantación de data marts concurrente con la implantación de un nuevo ERP. Este enfoque reduce de una manera importante la duración y el coste de cada uno de los proyectos.
 

Hi-Spins Tecnología

Software Greenhouse desarrolló su propia tecnología OLAP, con una arquitectura diseñada a medida del nicho de mercado al que se dirige. Los data mart de Hi-Spins se componen de múltiples segmentos de información homogénea, llamados contextos. Dichos segmentos se conectan mediante sus dimensiones comunes, lo cual facilita la posibilidad de un desarrollo incremental del data mart. Cuando las cantidades de registros crecen, Hi-Spins, como la mayoría de motores OLAP, define contextos redundantes con información resumida. Hay sin embargo una diferencia importante: La tecnología original de Software Greenhouse, potenciada con el uso de "parallel computing", introducido en el producto mediante un proyecto patrocinado por la iniciativa Esprit, permite reducir el uso de índices y de redundancias. Este factor resulta ser decisivo para la facilidad y rapidez del desarrollo de los data marts Hi-Spins. La tecnología de Hi-Spins, permite también lograr altos rendimientos con un hardware económico.
 

Dos tipos de usuario

Como todas las herramientas de "Business Intelligence", Hi-Spins tiene dos tipos de candidatos para su uso. 

Los primeros (típicamente los departamentos de marketing) formulan al sistema consultas cada vez nuevas y distintas y se preocupan más del contenido que del formato final del resultado. Los otros (típicamente la alta dirección), requieren periódicamente la misma información, pero ésta debe presentarse en un formato preciso y elaborado.
 
Para los primeros, Hi-Spins tiene un módulo denominado "Cliente Estándar Hi-Spins" que permite formular, con gran facilidad, las selecciones requeridas y de forma inmediata resuelve las consultas. Para el segundo tipo de usuarios, Hi-Spins proporciona el módulo de reporte que, con el uso de tecnología OLE o .NET, facilita la invocación de las consultas desde las herramientas "Office" o de programación visual y permite darles el formato final requerido: desde un reporting corporativo mensual, hasta un "panel de control " para la alta dirección.

El uso de servidores OLE permite también absorber información directamente de las hojas electrónicas donde se elabora, (por ejemplo los presupuestos u objetivos de ventas), o integrar consultas de Hi-Spins en otros sistemas, tales como la informática móvil de ventas.
 

¿Necesitan proyectos de éxito?

Hi-Spins proporciona el motor OLAP, las interfaces con las bases de datos de origen, consultas estándar, consultas personalizadas y muchas utilidades, como la distribución de consultas por e-mail, publicación en web, propagación de data marts y otras. Ello facilita que una empresa solucione su problemática de obtener información con mayor agilidad, con un proveedor único. Y dado que a su equipo de informáticos le resulta fácil involucrarse en el proyecto y dominar la metodología de desarrollo de data marts, normalmente se logra un alto nivel de independencia del proveedor.

Una vez realizado el proyecto, los usuarios aprenden a usar el producto en pocas horas y el soporte que antes les tenían que dedicar los informáticos prácticamente desaparece. Y un usuario que puede, por sí mismo, formular sus consultas y obtener la respuesta a la mayoría de ellas en cuestión de segundos, está listo para cambiar todo el concepto que se haya formado de la informática.
 

para-mas-info-software-greenhouse
Para más información sobre Proyectos de Business Intelligence, no dudes en consultarnos
 
logo-hi-spins-mobile-2

¿Por qué?   

 

¿Porqué los usuarios me piden tanta información?

El conocimiento es el arma más poderosa que un negocio puede tener en su arsenal. Y para desarrollar el conocimiento se necesita información.
 
El conocimiento nos permite gestionar la empresa de una manera más productiva, servir mejor a los clientes, aumentar los beneficios y permanecer competitivos. Los distribuidores perfeccionan el análisis de la información sobre las compras de los clientes y en consecuencia, gestionan mejor las promociones, el stock, y la composición de la lista de productos. El análisis de información de las compras permite por ejemplo, reducir la lista de productos sin reducir la oferta efectiva a los clientes.
 
Las empresas de servicios analizan cuidadosamente los perfiles de sus clientes. La gestión de las relaciones con el cliente se ha convertido en la clave de la supervivencia. La habilidad de enfocar a los clientes con el mejor potencial de beneficios ayuda a reducir el volumen de trabajo de ventas, mejorando a la vez los resultados. La capacidad de prever la demanda en base a los patrones históricos ha resultado altamente beneficiosa para muchas empresas. Las empresas desarrollan rápidamente nuevos productos en respuesta a las tendencias “calientes” y optimizan su producción y las listas de precios. Se generan y mantienen dinámicamente las ofertas para los clientes especiales. Una gestión equilibrada de la selección, servicio y atención al cliente ha demostrado ser el instrumento más potente para retener al cliente.
 

para-mas-info-software-greenhouse
Para más información sobre Proyectos de Business Intelligence, no dudes en consultarnos
 
logo-hi-spins-mobile-2

Hi-Spins Data Mart: El Business Intelligence de Software Greenhouse

 

Del Query a Data Mining

En la informática, tanto en hardware como en software se pueden distinguir claramente distintas generaciones de productos, según surgen, tienen su auge y posteriormente su declive las distintas tecnologías. Al principio, en la prehistoria de la informática, nos colmaba de satisfacción el haber impreso los recibos de nómina o las facturas. Más adelante, los usuarios empezaron a interesarse por la posibilidad de explotar para su trabajo la información almacenada en los sistemas transaccionales. Entonces, han surgido dos tecnologías muy importantes, como son los queries (software de consultas) y EIS (Sistemas de Información para la Dirección).
 

Los proyectos EIS

Un típico proyecto EIS, comienza por una fase previa muy extensa, en la cual se define la información que necesita tener la alta dirección en su 'tablero de mandos'. A continuación se desarrolla un proyecto, cuyo objetivo es extraer de las bases de datos operativas la información necesaria, sintetizarla y presentarla, generalmente de una manera muy espectacular, tal como se lo merecen 'los consumidores', los más altos ejecutivos de una gran empresa. Los resultados suelen ser muy satisfactorios, queda un solo problema, el muy alto coste de este tipo de proyectos. Pero peor aún, la evolución del mercado y de la empresa demanda que el EIS de la empresa también evolucione y el coste del mantenimiento es igual de alto como el del proyecto inicial. Por este mismo motivo el EIS no es una herramienta apropiada para el análisis de datos a nivel departamental.
 

Los productos Query

Al realizarse el análisis detallado de ventas, costes, márgenes, rotaciones etc., las preguntas que se plantea un usuario varían constantemente. Por cierto, tardó bastante tiempo, para que los informáticos nos diéramos cuenta que esto no es un capricho del usuario, sino una necesidad objetiva del negocio. Aquí no hay un tablero de mando. No se constata el 'qué esta pasando', se analiza el 'porqué puede estar pasando'. Por esto los queries son un software con una capacidad de extraer la información sin ningún proyecto previo. La información se presenta en forma poco espectacular, muchas de las consultas son para 'usar y tirar.
 
Los queries son un avance fabuloso tanto para el informático como para el usuario. El usuario puede por sí solo extraer información de la base de datos, sin esperar que los informáticos, generalmente ya bastante agobiados por otros proyectos, programen la salida en el formato solicitado por el usuario.
 

La evolución hacia Data Warehouse

Una vez descubierta la posibilidad de obtener información sin programar, su uso aumenta constantemente. Pero el verdadero desbordamiento se produce con las hojas electrónicas bajo Windows y la posibilidad de alimentarlas con la información de la base de datos operativa. Ahora los usuarios pueden no solamente acceder a la información, sino realmente trabajar con ella. Además las hojas electrónicas permiten presentar la información en una forma muy atractiva.
 
Aparece un nuevo tipo de productos que permite al usuario, directamente desde su PC y trabajando con interfaz gráfica, solicitar la información a la base de datos central. La utilidad del binomio query - hoja electrónica es tan enorme, que en muchas instalaciones la ocupación del hardware por los queries representa un porcentaje elevado. Este fenómeno constituye la mejor prueba de la importancia que tiene para una empresa el trabajar con la información. Sin embargo, la masificación del uso de las consultas, llega a poner en evidencia algunas deficiencias intrínsecas de este tipo de productos.
 
En primer lugar, la velocidad. Los tiempos de respuesta son muy lentos y se convierten en un freno importante del análisis de la información, puesto que cada consulta resuelta, genera nuevas preguntas. Los tiempos de respuesta lentos, interrumpen el hilo del razonamiento del usuario, dificultando así la tarea de profundizar el análisis. Pero además de la lentitud, también la alta ocupación de los recursos de hardware por los queries constituye un problema. La sobrecarga aumenta aún más la lentitud de las consultas y baja el rendimiento de las propias aplicaciones operativas. Esta situación conduce a constantes y costosos upgrades de ordenadores.
 
La proliferación de queries no sólo ha llegado a colapsar muchos ordenadores, sino que también absorbe un volumen significativo de los recursos humanos de los departamentos de informática. Ello se debe al hecho de que la petición de la consulta se especifica en términos de la base de datos. Hay que utilizar los nombres de columnas y tablas y por tanto, hay que saber cómo están diseñadas las bases de datos. Muchas veces hay que definir joints, e inclusive, tablas especiales para poder unir información de una aplicación con otra, cuando sus tablas no son compatibles. Demasiadas veces, el resultado de una petición no es el pretendido por el usuario. Por todo esto, en las instalaciones, donde no se haya hecho una inversión considerable para que los usuarios adquieran un grado de cultura informática relativamente elevado, hay que dedicar recursos importantes al soporte de los queries.
 
Otro problema es la inconsistencia de la información obtenida. Frecuentemente, los usuarios omiten algún factor importante al formular sus peticiones de consulta. Como resultado, en el mejor caso hay que repetir las consultas, modificando la petición, en el peor se trabaja con información distorsionada. Y no es nada raro que en una reunión de ventas o un consejo, diferentes personas se presentan con información distinta. Más de una reunión ha degenerado en un intento de conciliar la información que traen consigo los distintos participantes.
 

Data Warehouse

Todos estos problemas no son deficiencias de productos determinados, ni mucho menos culpa de los desarrolladores. Se producen, porque una tecnología llega al límite de sus posibilidades. La solución ya no se puede producir por la vía del 'más de lo mismo'.
 
Los problemas de velocidad y de sobrecarga de procesadores se deben al hecho que las bases de datos relacionales han sido diseñadas para el trabajo transaccional y no para atender consultas. El objetivo de obtener cualquier información en cualquier momento, existan o no los índices necesarios en la base de datos, es una tarea demasiado difícil para las bases de datos relacionales. Por ello, ha surgido la tecnología Data Warehouse que se apoya en otro tipo de bases de datos. Se define un nuevo entorno, el OLAP (Procesamiento Analítico en Tiempo Real) en contraste con el existente OLTP (Procesamiento de Transacciones en Tiempo Real).
 
Las bases de datos para OLAP tienen una estructura totalmente distinta, orientada a alta velocidad de recuperación de la información para consultas. Se les suele llamar bases de datos multi-dimensionales o también 'hiper-cubos'. Los conceptos como Zona, Producto, Vendedor o Período de Venta se convierten en las múltiples dimensiones de estos cubos, y en las intersecciones de sus coordenadas, están almacenados los valores correspondientes. De esta manera, los Data Warehouse homogenizan la información en unas estructuras que permiten acceder más fácilmente a cualquier dimensión y de allí navegar mediante funciones específicas tales como 'la rotación del cubo' (detallar determinada información siguiendo el criterio de otra dimensión, como por ejemplo, detallar zona por producto); 'drill down' (bajar al siguiente nivel, como por ejemplo, detallar zona por comercial) etc.
 
Estas nuevas estructuras de datos, además de responder a las consultas bastante más rápidamente, lo hacen con menor utilización de recursos. Pero sobre todo, al trabajar sobre otra base de datos, se separan los procesos transaccionales de los procesos de consulta, colocando los procesos de consulta generalmente en otro ordenador, a veces con características especiales de procesadores.
 
La idea de la coexistencia de dos bases de datos que almacenan esencialmente la misma información estructurada en formas distintas, según el tipo de proceso a que se estén sometiendo los datos, resultaba inicialmente un tanto chocante. No es de sorprenderse, puesto que los informáticos estábamos enseñados a perseguir con insistencia el inalcanzable objetivo de la integración total de las aplicaciones y la eliminación de todo tipo de redundancias. En la actualidad, esta idea está apoyada por la existencia de cada vez más evidencias de los buenos resultados y también por la baja de los precios de hardware. Además en muchas de las aplicaciones, la replicación de la información no tiene que ocurrir estrictamente en tiempo real y en aquellos casos donde sí sea indispensable, tenemos a mano otra nueva tecnología: la de 'mirroring'. Los productos que usan esta tecnología son capaces de replicar datos y objetos en tiempo real, con garantía de una sincronización exacta. En este punto también conviene hacer la observación, que la redundancia es uno de los conceptos inherentes de Data Warehouse, utilizado para aumentar las velocidades de acceso.
 
Lo dicho en el párrafo anterior no significa de ninguna manera que un proyecto de definición de un Data Warehouse y su alimentación es algo simple. Todo lo contrario: los grandes Data Warehouse son sistemas sumamente sofisticados y para su implantación hace falta un conocimiento muy profundo, tanto del producto, como de la problemática de usuario. La forma de plantear la distribución de datos en un Data Warehouse tiene un impacto decisivo en su rendimiento. Hay muchos proyectos que han resultado una decepción porque se subestimaron estos factores.
 
La homogeneización de las estructuras de datos tiende a resolver otro gran problema de los queries: El del soporte requerido por los usuarios. La tecnología Data Warehouse facilita que el usuario especifique sus peticiones de consulta en su lenguaje propio, en vez de usar la terminología de base de datos. (Esto, cuando los diseñadores del producto logran evitar la tentación de sustituir una jerga informática 'plana' por otra 'multi-dimensional', que puede resultar aún más difícil para los mortales.)
 
Finalmente, el problema de inconsistencia de la información elaborada por los queries, también puede encontrar su solución en Data Warehouse: Cuando se define el contenido del Data Warehouse, es necesario definir con exactitud la correspondencia de conceptos entre la base de datos transaccional y el Data Warehouse. A partir de allí, cualquier usuario que seleccione una consulta como 'Venta del Producto X en el mes corriente con detalle por Clientes', obtiene la misma respuesta.
 

El avance de Data Warehouse

Es natural que una nueva tecnología, con un potencial para resolver problemas tan importantes como los sufridos por los usuarios de los queries y sus departamentos de informática, tenga un éxito notable. Las predicciones de crecimiento del mercado hablan de 700% de incremento inter-anual en próximos 5 años y textualmente cada mes aparecen nuevos productos. En grandes empresas, los productos Data Warehouse han asumido la mayoría de funciones antes realizadas con queries y también una parte de las funciones del EIS. La eliminación total de los queries normalmente no es práctica ni debe ser el objetivo, puesto que siempre existirán consultas puntuales. Como en todos los proyectos, aquí también es aplicable la regla 80 / 20 - el último 20 % cuesta 80% del esfuerzo. Por tanto, el proponerse el objetivo que todas las consultas tienen que ser satisfechas por el Data Warehouse, encarece el proyecto de una forma muy significativa.
 
Las funciones de los EIS que conviene que sean absorbidas por Data Warehouse son aquellas, que requieren una presentación menos espectacular y tienen una variedad de posibles consultas muy grande. Absorbiendo estas funciones, un Data Warehouse puede producir muy significativos ahorros de coste de mantenimiento del EIS. De hecho están surgiendo nuevos productos que combinan la tecnología Data Warehouse con la opción de definir output tipo EIS. Es una combinación muy lógica y a la vez potente, que le da un alto valor a los productos que la usen.
 

Data Mart: el hermano menor de Data Warehouse

A pesar de las grandes ventajas de Data Warehouse, parecen existir unas importantes barreras para su utilización en empresas de tamaño mediano. Los productos Data Warehouse han nacido para resolver problemas de análisis de grandes masas de información, en empresas donde una pequeña diferencia en el valor de una variable, puede afectar la cuenta de resultado con unas diferencias de millones de dólares.
 
Los productos y proyectos Data Warehouse están dimensionados para este tipo de empresas, contando con hardware muy potente (muchas veces especializado) y la masiva intervención de consultores externos, expertos en la realización de la puesta en marcha. Un proyecto de este tipo resulta en todos los aspectos excesivo para un departamento de ventas que necesita analizar la información de 500.000 - 3.000.000 de líneas de pedidos, o una cantidad equivalente de información financiera, que es lo normal para una empresa mediana.
Para resolver este tipo de necesidades han surgido los Data Mart, productos que utilizan la tecnología Data Warehouse adaptada a las necesidades de las empresas medias. Data Mart se destaca por una definición de requerimientos más fácil y rápida. También se simplifica el desarrollo de todo el mecanismo de su base de datos y con ello baja substancialmente todo el coste del proyecto, así como su duración. Normalmente, Data Mart resuelve aplicaciones a nivel departamental, aunque en ocasiones se desarrolla una aplicación que integre todas ellas y proporciona las funciones de un EIS.
 
Los esfuerzos de los desarrolladores de productos Data Mart, junto con los mejoras del índice precio/rendimiento del hardware, suben constantemente el límite de penetración de Data Mart, permitiendo asumir proyectos más y más importantes. La simplicidad de los proyectos de Data Mart y el menor coste en comparación con Data Warehouse, significan una ventaja competitiva muy grande a favor de Data Mart, donde el mercado de los dos tipos de productos se solapa.
 

Data Mining

Data Mining es aparentemente hasta ahora la forma más avanzada de extraer la información de las bases de datos. En su máxima expresión, ya no es el usuario quien formula las consultas. 'Agentes inteligentes' recorren las bases de datos y buscan en ellas posibles relaciones. Veamos un ejemplo distinto al que casi siempre se ha visto en las revistas, (el de la relación de la hora en que se compran los pañales y la cerveza por cajas):

Si en la base de datos está la información de venta de agua mineral por días y las condiciones climatológicas, lo obvio es que existirá una relación y no se necesita data mining para cuantificarla. Sin embargo si esta relación cuantificada la comparamos con la del año pasado, seguro que no coincidirá. ¿Qué ha cambiado? Aquí es dónde empieza tener sentido utilizar data mining. Las preguntas que surgen aquí son: ¿Cuántos de los factores que han producido el cambio están reflejados en nuestra base de datos y con qué precisión? ¿Hasta qué punto se las pueden arreglar los agentes inteligentes con las deficiencias del diseño de una base de datos y la falta de su normalización? ¿Cuánto tratamiento previo hay que darle a la base de datos, para que tenga sentido empezar con data mining y cuántas posibles relaciones útiles se perderán en este tratamiento? Pero indudablemente, data mining nos puede aportar ideas muy importantes. La cuestión es qué coste de hardware, software y recursos humanos tienen.
 
Parece por todas las preguntas sugeridas y muchas otras que seguramente quedan en el tintero, que aunque se hacen muchas presentaciones de data mining a empresas medianas y hasta pequeñas, este tipo de tecnología, por algún tiempo, solo puede resultar rentable para empresas muy grandes.
 

Conclusiones

He tratado aquí de escribir en forma sumamente resumida sobre las distintas herramientas, usadas para poder trabajar con la información que se oculta en nuestras bases de datos transaccionales, sus características y su evolución. Las características de cada tipo de producto tal como se han comentado, muchas veces no se presentan en forma tan tajante como en este artículo, puesto que existen productos híbridos. Por otro lado la forma de implantar un producto y la calidad profesional de los instaladores, pueden significar una diferencia enorme entre dos instalaciones de un mismo producto. Si el artículo les ha ayudado a pensar qué tipo de preguntas se debe hacer a los proveedores de este tipo de herramientas, considero que haya cumplido su misión.
 
Aparte de esto nunca sobra volver a recordar las reglas básicas, tales como la regla 80 / 20, la que distintos tipos de tarea requieren herramientas distintas y que para cada tamaño del problema hay que calibrar el tamaño de la solución (mejor un martillo y un destornillador que un martillo más grande). Ni el uso de las más avanzadas tecnologías se escapa a las reglas básicas del sentido común.
 

para-mas-info-software-greenhouse
Para más información sobre Proyectos de Business Intelligence, no dudes en consultarnos
 
logo-hi-spins-mobile-2

Posicionamiento   

 

Data Mart frente a otras tecnologías de extracción de la información

¿Qué es un Data Mart?

La tecnología Data Warehouse que se caracteriza por su enorme poder de extracción y presentación de información, tiene sus orígenes en los bancos y las enormes distribuidoras estadounidenses. Esto determina las dimensiones de los proyectos, marcados por un considerable despliegue de procesadores, discos y sobre todo de consultoría. Utilizar este tipo de proyectos para abordar la problemática de las empresas medias, puede resultar como usar un 747 para ir de Madrid a Alcalá de Henares. Apartando el coste, quien intentó implantar un software escrito para empresas mucho más grandes, sabe que hacer downsizing de software es una de las tareas más ingratas en la informática. Este hecho ha dado origen a los Data Marts como Hi-Spins, que adaptan la tecnología Data Warehouse a la problemática de la mediana empresa.
 
La necesidad de análisis de información existe en la empresa mediana, tanto como en la empresa muy grande, y sus problemas con la lentitud de las consultas y la necesidad de darles soporte a sus usuarios no son menores. Lo que es diferente es el volumen de información que debe ser sometido al análisis. Por ello y para que los proyectos sean de tamaño razonable y su coste sea aceptable, hay que ajustar algunos conceptos de Data Warehouse.
 
Basándose en los conceptos de OLAP, Software Greenhouse ha desarrollado su producto, evitando las desventajas de las clásicas soluciones de bases de datos relacionales con índices. Software Greenhouse ha intentado al máximo adaptar la programación, cuyo objetivo es leer en muy corto espacio de tiempo grandes cantidades de registros, a la forma de operar de los discos comúnmente utilizados en los servidores. Es una tecnología más reciente que la de la mayoría de los productos maduros de Data Warehousing actualmente en el mercado que permitirá un fuerte crecimiento de la capacidad de los Data Mart a corto plazo.
 

La metodología de la puesta en marcha

Los proyectos de Hi-Spins duran normalmente de 2 a 4 meses. La primera idea básica es que la base de datos de su empresa es buena. Ha evolucionado de acuerdo con las necesidades de la empresa y por tanto contiene toda la información esencial, aún en el caso que no cumpla con todas las normas. Partiendo de este principio, lo primero que se hace en un proyecto de Hi-Spins es examinar la base de datos y derivar de ella unos modelos multi-dimensionales, que se presentan a los usuarios en forma de maqueta. Una maqueta de Hi-Spins tiene la funcionalidad completa del producto, pero los datos que la llenan, son sólo un modelo aproximado de las futuras dimensiones y variables del modelo.
 
Este enfoque evita la necesidad de que el usuario tenga que escribir su “carta a los Reyes Magos”. ¿Se imaginan un usuario con un lápiz y unas hojas blancas, en las que tenga que indicarnos todas las consultas que querrá hacer en los próximos 5 años? En una maqueta, el usuario puede probar en el teclado el alcance de su futuro sistema de consultas y, por diferencia, determinar qué falta y qué sobra.
 
Una vez aprobadas las maquetas, comienza la segunda fase del proyecto, en la cual se realiza la conexión con la base de datos operacional. Para la conexión se utilizan los ficheros receptores estándar de Hi-Spins que se colocan en el host. (Este puede ser un AS/400, un servidor NT o Unix con cualquier base de datos comúnmente utilizada o un mainframe.) Los receptores son físicamente idénticos para todas las aplicaciones de Hi-Spins, su contenido, sin embargo, varía de acuerdo con la definición del modelo de datos.
 
Para realizar la conexión sólo hay que reflejar las columnas de la base de datos de origen, en su sitio correspondiente en los receptores. Para ello, lo más recomendable es utilizar unos programas sencillos en COBOL, C, RPG o cualquier lenguaje común para la instalación. A partir de aquí, el programa de mantenimiento de la base de datos de Hi-Spins se encarga de incorporarlos a la base de datos multi-dimensional.
 
Las bases de datos de cada empresa contienen información que sirve para atender mejor a los clientes, reducir costes y mejorar ventas. Pero realmente hay que realizar una verdadera minería para explotarla. La progresión exponencial de las exigencias del usuario avanzado para explotar esta información, dio origen a varias nuevas tecnologías, cuyas comparaciones y evolución son conocidas. Esta vez, enfocaremos de cerca las herramientas Data Mart, utilizando como ejemplo el producto Hi-Spins de Software Greenhouse.
 
En la puesta en marcha de Hi-Spins participa el equipo informático de la instalación, conjuntamente con el equipo de Software Greenhouse. Al terminar el proyecto, los informáticos de la instalación están preparados para realizar otras aplicaciones de Hi-Spins para su empresa. La dependencia del proveedor es prácticamente nula en este sentido.
 
El Data Mart reside físicamente en los discos del servidor de red y usa sus procesadores. Por ello Hi-Spins no consume los más costosos recursos del ordenador central y es un potente “evitador de upgrades”. De hecho, el coste del proyecto Hi-Spins casi siempre queda cubierto, en menos de un año y medio, por el coste de migraciones que se hubieran tenido que pagar debido al constante aumento de utilización de los queries. Los requerimientos de hardware de la red son también razonables, un servidor Pentium 160 o 200, clientes a partir de 486/66 con 8 o preferiblemente 16MB de memoria, son los ordenadores más típicamente utilizados.
 
Muchas veces en un solo Data Mart convergen datos de varios ordenadores, así como datos de fuentes externas como la información del mercado, precios de materia prima (provenientes de la bolsa de valores) etc. También están disponibles interfases con los más importantes productos de software de aplicaciones, presentes en el mercado.
 
La metadata de Hi-Spins define los modelos multi-dimensionales y el contenido de los receptores. No se usa, sin embargo, para la conexión con la base de datos original. Dado el hecho que estas bases de datos no son un ejemplo de una demo, sino el resultado real de una evolución compleja de una instalación, el uso de metadata para definir la extracción, adquiere una complejidad excesiva. La paradoja resultante es que para evitar la programación, tenemos que aprender otro nuevo lenguaje de algo - metadata, CASE - que no se quiere llamar programación. A muchos usuarios de CASE esto le sonará familiar.
No obstante, para los que definitivamente prefieren evitar la programación, existen los productos con tecnología mirroring, que pueden ser utilizados para la conexión. Mirroring también puede facilitar la conexión cuando se requiere que el Data Mart se actualice en tiempo real, aunque no es indispensable para ello.
 

Hi-Spins y los usuarios

Los beneficios principales que aporta Hi-Spins a los usuarios son la velocidad de las consultas y la posibilidad de que sean ellos mismos, quienes sin conocer la base de datos ni entender los modelos multi-dimensionales, especifiquen las consultas requeridas. Con ello se superan los dos problemas principales de los productos “tipo query”. Un usuario que quiere saber, ¿Cuáles de sus clientes, pertenecientes al Grupo IFA, no han comprado durante los últimos dos meses los productos de la marca Heno de Pravia? y puede formular su pregunta en 20 segundos y obtener la respuesta en 5 segundos más, está listo para modificar todo el concepto que se haya formado de la informática. Y si su empresa tiene un concepto claro de la productividad del trabajo administrativo, no dudará un segundo sobre la utilidad de Hi-Spins.
 
Un usuario con conocimiento regular de Windows, sólo necesita de 3 a 6 horas de entrenamiento para aprender a sacar todo el beneficio de Hi-Spins. La principal diferencia con la tecnología EIS es que un Data Mart no necesita ningún tipo de mantenimiento para formular nuevas consultas. Por esta razón, algunas instalaciones que ya tenían EIS han instalado Hi-Spins para aquellos usuarios, cuyas consultas son mucho más variadas que las de la alta dirección. Los usuarios creativos con capacidad de improvisación son los que más se benefician de Hi-Spins. Para las consultas repetitivas, Hi-Spins tiene los catálogos de consultas predefinidas.
 
La interfase de Hi-Spins con el usuario permite tomar todas las decisiones de navegación de una forma muy sencilla. Es un producto hecho para trabajar, no para hacer demos, por lo que intenta evitar aquellos “efectos especiales” que consumen muchos recursos de hardware y a la larga no siempre facilitan el entendimiento de una consulta. Se apoya cada vez más en una interfase bi-direccional con hojas electrónicas. Esto significa que no sólo puede convertir una consulta en hoja electrónica, sino también usar hojas electrónicas como entrada de datos (con una validación completa y la comprobación de autorizaciones necesarias). Hi-Spins es capaz de reconocer determinadas hojas e identificar la posición que corresponde a cada celda en el modelo multi-dimensional. Este enfoque significa una gran simplificación para algunas tareas administrativas, tales como cálculo y seguimiento de presupuestos.
 
Funcionalmente, Hi-Spins cumple todos los requerimientos de Data Mart, presentando además algunas características sumamente importantes, que muchos otros productos no ofrecen. Entre ellas se puede nombrar la definición de consultas “línea por línea”, jerarquías múltiples (Clientes por Tipo, por Cadena, por Vendedor, por Zona etc., a la vez), selecciones y omisiones múltiples, prueba de presencia o ausencia de registros (“no han comprado”), selecciones por expresión con múltiples variables, o utilización de hojas electrónicas como input.
 

¿Si existiese un generador de tiempo disponible, lo compraría?

En la mayoría de instalaciones que usan productos para extraer información de la base de datos, los usuarios consumen considerables cantidades de tiempo de los informáticos. El proyecto de conexión de Hi-Spins con la base de datos de origen, resuelve el problema de una sola vez y el mantenimiento requerido es mínimo. Hi-Spins reduce el soporte para las consultas de los usuarios a la mínima expresión. Su modelo multi-dimensional puede reflejar toda la información contenida en la base de datos operacional, y proporciona a los usuarios una facilidad de acceso sin precedentes. La utilidad de la informática y la comodidad de uso para el usuario final aumenta enormemente y con ello también su aprecio de la labor del informático.
 
Hi-Spins está preparado para el año 2000. Soporta no sólo el año de 4 dígitos, sino también múltiples variables monetarias con factores de conversión flexibles entre ellas. Cada programa de output que puede ser sustituido por consultas de Hi-Spins, significa un programa menos para someter a la conversión.
Hi-Spins proporciona al informático APIs y servidores OLE para realizar, a distintos niveles, la interfase con el producto. Esto hace posible, por un lado, presentar las consultas bajo cualquier formato desarrollado en Visual Basic, Delphi u otros lenguajes de interfases gráficas. Por otro lado, desde cualquier aplicación, ya sea Excel, Word o aplicaciones propias de la instalación, pueden invocarse consultas de Hi-Spins, bajo el formato de hojas electrónicas o el formato propio de Hi-Spins. 
 

El diálogo con los usuarios

En las líneas anteriores, hemos intentado profundizar en la materia Data Mart, usando el ejemplo del producto Hi-Spins de Software Greenhouse. El hecho que para nosotros este producto se identifique con todas las virtudes de la tecnología Data Mart, no es casual. Lo desarrollamos con determinada filosofía, porque creemos que debe hacerse de esta forma. Pero Hi-Spins, más que ningún otro producto anterior nuestro, es resultado de un constante diálogo con los informáticos y usuarios de nuestras instalaciones. Por esto le sugerimos llamarnos, para que le demos la lista completa de las instalaciones de Hi-Spins. Nuestros usuarios son los que mejor les podrán informar, hasta qué punto nuestro enfoque ha dado resultados positivos en su instalación.
 

para-mas-info-software-greenhouse
Para más información sobre Proyectos de Business Intelligence, no dudes en consultarnos
 
CONTACTO
500 caracteres restantes
DÓNDE ESTAMOS
BARCELONA
Figueres, 8
08022 Barcelona
MADRID
Santo Ángel, 110
(Entrada por Ctra. de Canillas, 16)
28043 Madrid
Centralita: +34 93 253 16 50
Soporte clientes: +34 93 212 15 66

S5 Box (1/2-50%, 3/4-40, 5/6-30, 7/8-20, 9/10-80%)

Login

Register

You need to enable user registration from User Manager/Options in the backend of Joomla before this module will activate.